Vol. 29, No. 3 March, 2009

文章编号: 0253-2239(2009)03-0781-05

空气飞秒激光成丝现象中产生的 椭圆偏振单周期太赫兹脉冲

张逸竹1 陈燕萍2 李志强1 徐圣奇1 刘伟伟1 陈瑞良2

「南开大学现代光学研究所教育部光电信息科学重点实验室, 天津 300071

(² 拉瓦尔大学光学、光子学和激光中心,物理、工程物理和光学系,加拿大 魁北克 G1V 0A6/

摘要 飞秒激光在空气中形成的等离子体细丝会辐射出太赫兹(THz)信号。实验利用 1 mJ,800 nm,50 fs 的飞秒 激光脉冲产生等离子体细丝。应用光电取样方法探测了激光成丝现象中前向辐射的 THz 脉冲,得到了持续时间 为0.1 ps、光谱峰值在 1 THz 左右的单周期 THz 脉冲。转动抽运光的偏振态,分析了电光取样信号的变化。通过 比较实验数据和计算结果,证明了成丝辐射 THz 脉冲的偏振态为椭圆偏振态。

关键词 非线性光学;超快光学;激光成丝;太赫兹波 中图分类号 O437.1 **文献标识码** A **doi**: 10.3788/AOS20092903.0781

Elliptical Polarized Single-Cycle THz Pulse Generated by Femtosecond Laser Filamentation in Air

Zhang Yizhu¹ Chen Yanping² Li Zhiqiang¹ Xu Shengqi¹ Liu Weiwei¹ See Leang Chin²

¹Institute of Modern Optics, Nankai University, Key Laboratory of Opto-Electronic Information Science and Technology, Education Ministry of China, Tianjin 300071, China

² Centre d'Optique, Photonique et Laser (COPL) et le Département de Physique, de Génie Physique et d'Optique, Université Laval, Québec, Québec G1V 0A6, Canada

Abstract Strong forward propagated THz pulse can be generated by femtosecond laser filamentation in air. An electro-optical sampling based time domain spectroscopy (TDS) technique is used to diagnose the THz pulse produced by a femtosecond laser filament in air. The filament is generated by a 1 mJ, 50 fs laser pulse centered at 800 nm. The THz pulse measured in experiment is a single-cycle pulse (pulse width is 1ps) and the corresponding spectrum peak value is around 1 THz. The polarization orientation of pump beam is rotated and the variation of electro-optical sampling signal is analyzed-Compared the experimental results with the calculational results, the polarization of THz pulse emitted from filamentation is elliptical.

Key words nonlinear optics; ultrafast optics; femtosecond laser filamentation; THz pulse

1 引 言

因为太赫兹(THz)频段辐射在远程传感、化学 光谱学、生物诊断和反恐探测中的广泛应用,所以 THz科学技术引起了人们很大的兴趣并得到了深入的研究^[1~6]。和传统的非线性光学材料相比,以 空气作为非线性变换介质的方法实验装置相对简

收稿日期: 2008-08-26; 收到修改稿日期: 2008-10-15

基金项目:国家 973 计划(2007CB310403)、教育部"新世纪优秀人才支持计划"(NCET-07-0455)、国家自然科学基金 (10804056)、霍英东教育基金会青年教师基金(111009)、国家教育部回国人员科研启动基金、国家教育部博士点专项基金 (20070055074)和国家自然科学基金重大项目资助(60637020)资助课题。

作者简介:张逸竹(1984一),男,硕士研究生,主要从事超快光学方面的研究。E-mail: ALL91@163.com

导师简介:刘伟伟(1976-),男,博士,教授,主要从事超快激光科学方面的研究。E-mail: liuweiwei@nankai.edu.cn (通信联系人) 单,而且不容易被强光破坏,所以在近年来受到了很 大关注^[7~12]。但当 THz 信号在空气中传播时,空 气中水蒸气的吸收会使 THz 信号发生明显的衰减。 目前,利用飞秒激光成丝现象远程产生 THz 信号是 解决这一问题最好的方法^[9~12]。在飞秒激光传播 的过程中,可很方便地控制成丝现象产生的位置,使 光丝尽可能地接近被探测物体,实现 THz 的远程传 感。这种思想已经在 C. D'Amico 等^[9]的实验中实 现,用瞬态切伦柯夫辐射(Transitent-Cherenkov radiation)来解释这种 THz 空间分布的形式,将 THz 辐射源看作一个偶极子,这个偶极子在光丝中 随激光脉冲以光速向前运动,产生锥形辐射的 THz 信号。

本文用光电取样 THz 时域光谱的方法探测到 了飞秒激光成丝所产生的 THz 脉冲,获得了单周期 THz 脉冲,脉冲宽度为 1 ps,频谱的峰值在 1THz 左右。通过对实验数据的分析,发现探测到的 THz 信号的偏振态是椭圆偏振态,这不同于以往的实验 结果。

2 实 验

实验中使用了一台 1 kHz,800 nm,45 fs 的钛 宝石飞秒激光器。飞秒激光被分成两路,高能量的 一路作为抽运光,聚焦到空气中成丝产生 THz 信 号;弱能量的光束用于探测 THz 信号。实验装置图 如图 1 所示。单脉冲能量为 1.15 mJ 的抽运光经焦 距为 50 cm 的平凹透镜聚焦产生 3 cm 长的光丝。 用两个直径 5 cm,焦距 10 cm 的抛物面镜(PM)收 集细丝产生的 THz 信号。第一个抛物柱面镜 1 上 有一个直径为 4 mm 的小孔,这样抽运光可通过这 个小孔和 THz 信号分离。第二个抛物面镜 2 把收 集到的 THz 信号录焦到厚度为 1 mm,(110)方向切 割的 ZnTe 晶体上。在整个实验中 ZnTe 的 Z(001) 轴始终是沿水平方向的。在两个抛物面镜之间用一 个直径为 75 mm,厚度为 5 mm 的聚四氟乙烯

图 1 实验装置示意图 Fig. 1 Schematic of experimental setup

(Teflon)板阻挡剩余的抽运光和成丝过程中产生的 白光。探测光经过延时后,用一个 R:S=45:55 薄 膜分束镜(2 μm 厚)把探测光和 THz 信号耦合到一 起。探测光的偏振方向始终保持水平并与 ZnTe 的 Z 轴方向平行。在 ZnTe 晶体中,THz 信号改变了 探测光的偏振态,最后用平衡探测器探测信号光偏 振态的变化。

3 结果和分析

图 2(a)为用光电取样方法探测到的 THz 电场的波形,图 2(b)为波形对应的频谱分布。可见,探测到单周期的 THz 脉冲,THz 脉冲的周期约为 1 ps,频谱的峰值在 1THz 左右。图 3 中实心方格曲线表示测量的 THz 信号的峰峰值随抽运光偏振方向的变化。

图 2 实验测得的 THz 波形(a)和相应的频谱(b)

Fig. 2 Experimental THz electric field waveform (a) and the corresponding THz spectrum (b)

图 3 中 θ 为抽运光偏振方向与 ZnTe 晶体 Z 轴

图 3 假设 THz 电场是线性偏振的, THz 电场的实验结 果和计算结果的比较

Fig. 3 Comparison of THz peak-to peak amplitude with calculated results, assuming the polarization of THz electric field is linear

的夹角。在聚焦透镜前放置一个零阶半波片,通过 旋转半波片的角度来改变抽运光的偏振方向。如图 3 所示,当抽运光偏振方向平行于 ZnTe 的 Z 轴时, 得到的 THz 信号最强;当抽运光偏振方向和 ZnTe 的 Z 轴垂直时,得到的 THz 信号最弱。观察到的 结果不能完全用瞬态切伦柯夫辐射理论来解释。瞬 态切伦柯夫辐射理论把激光成丝辐射 THz 的原理 描述为轴向振荡的偶极子以光速随脉冲运动辐射出 电磁波,所以辐射的 THz 空间分布一定是以光丝为 对称轴轴对称分布的^[9]。

为了更好地研究激光成丝中辐射 THz 信号的 物理机制,需确定 THz 信号的偏振态。在以 ZnTe 为探测晶体的光电取样系统中,可通过分析探测光 偏振方向、THz 电场方向和 ZnTe 晶体晶轴方向的 关系,得出平衡探测器探测到信号和 THz 偏振角度 的定量关系。光电取样系统原理图如图 4 所示。

Fig. 4 Schematic of the electro-optic sampling system

探测光的偏振方向始终平行于 ZnTe 晶体的 (001)轴(Z 轴)。当 THz 电场加到 ZnTe 晶体上 时,ZnTe 晶体的折射率椭球发生变化,最终折射率 椭球的三个主轴为 X',Y',Z'。经计算可知,最终的 折射率椭球的主轴相对于实验室坐标(X,Y,Z)发 生转动,转动的方向如图 4 所示。Z 轴和 Z'轴的夹 角 φ 与 THz 电场偏振方向有关,当 THz 的电场方 向与实验室坐标 Z 轴夹角为 φ 时,Z' 轴相对于 Z 轴 的夹角 $\varphi^{[13]}$ 为

$$2\varphi = -\arctan(2\tan\varphi) - n\pi, \quad \left(n - \frac{1}{2}\right)\pi \leqslant \varphi < \left(n + \frac{1}{2}\right)\pi. \tag{1}$$

两个折射率主轴 Y'和 Z'上的折射率

$$n_{y'}(\phi) \approx n_0 + \frac{n_0^3}{2} E_{\text{TH}_z} \gamma_{41} [\cos \phi \sin^2 \varphi + \cos(\phi + 2\varphi)],$$

$$n_{z'}(\phi) \approx n_0 + \frac{n_0^3}{2} E_{\text{TH}_z} \gamma_{41} [\cos \phi \cos^2 \varphi - \cos(\phi + 2\varphi)].$$
(2)

式中 n₀ 为没受到电光调制时 ZnTe 晶体的折射率, E_{THz} 为 THz 电场强度, γ₄₁ 为光电张量系数, φ 为 THz 电场 方向相对于实验室坐标系 Z 轴[晶体 ZnTe 的(001) 轴]的夹角。由(2)式可知在经过 THz 电场调制后, 探测 光在两个折射率主轴上的相位差为

$$\Gamma = \frac{2\pi}{\lambda} L\left(n_{y'} - n_{z'}\right) = \frac{\pi L n_0^3}{\lambda} E_{\text{TH}_z} \gamma_{41}(\cos\phi\cos 2\varphi - 2\sin\phi\sin 2\varphi). \tag{3}$$

知道探测光在 ZnTe 晶体两个方向上的相位差后,可以得到探测光依次通过光学器件后偏振态的变化, 经 Wollaston 棱镜分光后两束偏振正交光的电场强度可以表示为

$$\begin{bmatrix} E_{\rm Y} \\ E_{\rm Z} \end{bmatrix} = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \exp\left({\rm i} \ \frac{\pi}{2}\right) \end{bmatrix} \times \begin{bmatrix} \cos(\pi/4 - \varphi) & \sin(\pi/4 - \varphi) \\ -\sin(\pi/4 - \varphi) & \cos(\pi/4 - \varphi) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \exp({\rm i} \ \Gamma) \end{bmatrix} \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} 0 \\ E_{\rm probe} \end{bmatrix}.$$
(4)

因为平衡探测器探测到的信号是探测光两个偏振方向的光强差,所以平衡探测器探测到的信号 S_{signal} $S_{signal} = |E_Y|^2 - |E_Z|^2.$ (5) 简化(5)式得到最终的平衡探测器信号和 THz 电场方向的关系为:

$$S_{\text{signal}} = E_{\text{probe}}^2 \frac{\pi L n_0^3}{\lambda} E_{\text{TH}_z} \gamma_{41} \sin 2\varphi (\cos \phi \cos 2\varphi - 2\sin \phi \sin 2\varphi).$$
(6)

式中L为有效的相干长度。在实验中, E_{probe} , λ , γ_{41} , L, n_{0}^{3} 为常数, φ 由 THz 偏振方向决定,所以把(1) 式代入(6)式中,最终(6)式可以简化为

$$S_{\rm signal} \propto 2E_{\rm THz} \sin \phi,$$
 (7)

(7)式表示了平衡探测器输出信号与 THz 电场偏振 方向的关系,可推测 THz 电场的偏振状态。

首先,假设成丝辐射 THz 信号的偏振态和抽运 激光的偏振态相同,即 $\phi = \theta$ 。在这种情况下,计算 出来的 THz 信号强度如图 3 中实线所示。通过比 较可见,计算的结果和实验结果相差很多。再来考 虑另一种 THz 电场是线性偏振的情况,假设 THz 信号的偏振态和抽运光的偏振态相垂直,即 $\phi =$ $\theta + 90^{\circ}$ 。计算出的结果如图 3 中虚线所示。可见,计 算结果和实验结果同样不符。因此,有理由认为实 验中检测到的 THz 波不是线性偏振的, THz 偏振 态只有一种可能,即 THz 信号的偏振状态是椭圆偏 振的。

为验证实验中得到 THz 波是椭圆偏振,进一步 推算了 THz 波椭圆偏振态的具体参数。一方面用 光电取样方法探测到 THz 信号的能量可用 THz 电 场峰峰值的平方值来表示。另一方面,从(7)式知当 把 THz 电场看作两个正交偏振态的叠加时,ZnTe 晶体只对 Z 轴(001)上的 THz 电场有响应,对垂直 于 ZnTe 晶体 Z 轴方向上的 THz 电场没有响应。 ZnTe 晶体的这种性质与偏振片相类似,所以分析 ZnTe 晶体光电取样的方法记录的能量时,可把 ZnTe 当作一个光轴方向平行于 ZnTe 晶体 Z 轴的 偏振片。

这样,可把椭圆偏振态的 THz 电场的琼斯矢量 表示为 $\begin{bmatrix} 1\\ je \end{bmatrix}$,e为椭圆偏振态两个偏振方向短轴与长 轴的比例。当偏振方向中长轴与偏振片光轴方向的 夹角为 β 时,THz 电场透过偏振片的电场可以表 示为

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} 1 \\ ie \end{bmatrix}, \quad (8)$$

相应地,THz 信号透过偏振片的能量可表示为

$$I_x = E_x E_x^* = \cos^2\beta + e^2 \sin^2\beta, \qquad (9)$$

因为 ZnTe 晶体可以当作偏振片分析,可通过比较 THz 信号峰峰值的平方和(9)式,得到椭圆偏振态 重要的两个参数,进而定量地分析 THz 信号的椭圆 偏振态。

当抽运光的偏振方向 θ 转动时, $\beta = \beta_0 + \theta$, β_0 为 $\theta = 0^{\circ}$ 时椭圆偏振态长轴和偏振片光轴方向的夹角。 把实验中测得的 THz 信号峰峰值平方,结果如图 5 中实心圆点曲线所示。然后,用(9)式拟合实验中测 得的曲线(图 5 中实线),得到了 THz 信号椭圆偏振 态的两个重要参数:e=0.55 和 $\beta_0 = 11.5^{\circ}$ 。可得到 结论,激光成丝辐射的 THz 信号的偏振态为椭圆偏 振态,长轴方向和抽运光偏振方向的夹角为 11.5°。

图 5 假设 THz 电场为椭圆偏振态, THz 信号的能量和 计算数值的比较

Fig. 5 Comparison of the THz electric field energy with calculated result, assuming the THz electric field is elliptically polarized

飞秒激光聚焦到空气中时,在空气中发生三阶 非线性光学效应

$$\Omega_{\mathrm{THz}} = \omega_1 + \omega_2 - \omega_3$$
, (10)

式中当频率满足 $\omega_1 + \omega_2 \approx \omega_3$ 时会产生 THz 频段的 辐射。虽然在实验中没有用到常见的基频光 $\omega =$ 800 nm 和倍频光 $\omega = 400$ nm 四波混频的方法产生 THz^[11,14~18],但在飞秒激光聚焦到空气中导致成 丝现象的过程中,激光的光谱可以从紫外波段一直 延伸到红外波段。因此(10)式很容易被满足^[19~21]。 这样成丝过程中产生的平行于抽运光偏振方向的 THz 电场可以表示为

$$E_{\text{THz},x} \propto \gamma_{xxxx}^{(3)} E_{\omega_2} E_{\omega_1}^* E_{\omega_2}^* \exp(i\Delta kL), \quad (11)$$

式中 $\Delta k = k_1 + k_2 - k_3$ 为三阶非线性效应的相位匹 配条件, L 为有效的相干长度。细丝中产生的垂直 于抽运光偏振方向的 THz 电场可表示为

 $E_{\text{THz, y}} \propto \chi_{yxxx}^{(3)} E_{\omega_3} E_{\omega_1}^* E_{\omega_2}^* \exp(i\Delta kL).$ (12)

一般情况下,在各向同性的介质中 $\chi_{xxxx}^{(3)} = 0$ 。 但在飞秒激光成丝过程中,因为等离子体的产生,空 间对称性被破坏,从而导致三阶非线性系数 $\chi_{xxxx}^{(3)}$ 不 再为零^[11],偏振方向垂直于抽运偏振方向的 THz 电场辐射。因此在成丝过程中,垂直正交的两个方 向都会产生 THz 电场。进一步来说,因为高强度飞 秒激光在光丝中产生的双折射效应^[22],偏振正交两 个方向的 THz 电场在细丝中传播时会有相对的相 位差,辐射出椭圆偏振态的 THz 脉冲,且椭圆偏振 态 THz 脉冲的性质由偏振正交方向 THz 电场和它 们之间的相位关系决定的。

4 结 论

用 THz 时域光谱的方法研究了飞秒激光成丝 中辐射出的 THz 脉冲,并探测到了单周期椭圆偏振 态的 THz 脉冲。对于其产生机制认为,空气中的三 阶非线性效应是产生 THz 脉冲的主要物理机制。 在光丝中,三阶非线性系数导致了偏振正交两个方 向的 THz 电场辐射。因为高强度飞秒激光在光丝 中引起的双折射效应,偏振正交两个方向的 THz 电 场在空气中传播时会产生相位差,最终导致椭圆偏 振态 THz 脉冲的产生。

参考文献

- 1 Q. Wu, X. C. Zhang. Free-space electro-optic sampling of terahertz beams[J]. Appl. Phys. Lett., 1995, 67(24): 3523~ 3525
- 2 P. H. Siegel. Terahertz technology [J]. IEEE Trans. Microwave Theory and Techniques, 2002, 50(3): 910~928
- 3 J. H. Booske. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J]. *Physics of Plasmas*, 2008, **15**(5): 055502 ~ 055516
- 4 Zhang Xianbin, Shi Wei. THz electromagnetic radiation based on the stimulated Raman scattering of polariton [J]. Acta Optica Sinica, 2008, 28(5): 1012~1016

张显斌,施 卫. 基于耦合场量子受激拉曼散射的太赫兹波辐射[J]. 光学学报, 2008, **28**(5): 1012~1016

5 Zheng Fanghua, Liu Huan, Li Xifu *et al.*. Simultaneous dualwavelength quasi-continuous-wave laser-diode-end-pumped Nd: YAG laser for terahertz wave sourse [J]. *Chinese J. Lasers*, 2008, **35**(2): 200~205 郑芳华,刘 欢,李喜福等.产生太赫兹辐射源的 Nd:YAG 双 波长准连续激光器[J].中国激光,2008,**35**(2):200~205

6 Hu Jie, Chen Heming. Loss characteristics of photonic crystal fiber as terahertz waveguide [J]. Chinese J. Lasers, 2008, **35**(4): 567~572

胡 婕, 陈鹤鸣. 光子晶体太赫兹波导的损耗特性[J]. 中国激 光, 2008, **35**(4): 567~572

- 7 H. Hamster, A. Sullivan, S. Gordon *et al.*. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. *Phys. Rev. Lett.*, 1993, **71**(17): 2725~2728
- 8 H. Hamster, A. Sullivan, S. Gordon *et al.*. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas [J]. *Phys. Rev. E*, 1994, **49**(1): 671~677
- 9 C. D'Amico, A. Houard, M. Franco et al.. Conical forward THz emission from femtosecond-laser-beam filamentation in air [J]. Phys. Rev. Lett., 2007, 98(23): 235002
- 10 Y. Liu, A. Houard, B. Prade *et al.*. Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses [J]. *Phys. Rev. Lett.*, 2007, **99**(13): 135002
- 11 X. Xie, J. M. Dai, X. C. Zhang. Coherent control of THz wave generation in ambient air[J]. *Phys. Rev. Lett.*, 2006, 96(7): 075005
- 12 H. Zhong, N. Karpowicz, X. C. Zhang. Terahertz emission profile from laser-induced air plasma[J]. Appl. Phys. Lett., 2006, 88(26): 261103
- 13 P. C. M. Planken, H. K. Nienhuys, H. J. Bakker *et al.*. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe[J]. J. Opt. Soc. Am. B-Opt. Phys., 2001, 18(3): 313~317
- 14 J. Dai, X. Xie, X. C. Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases [J]. Phys. Rev. Lett., 2006, 97(10): 103903
- 15 T. Bartel, P. Gaal, K. Reimann *et al.*. Generation of singlecycle THz transients with high electric-field amplitudes[J]. *Opt. Lett.*, 2005, **30**(20): 2805~2807
- 16 D. J. Cook, R. M. Hochstrasser. Intense terahertz pulses by four-wave rectification in air [J]. Opt. Lett., 2000, 25 (16): 1210~1212
- 17 M. Kress, T. Loffler, S. Eden *et al.*. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. *Opt. Lett.*, 2004, **29**(10): 1120~1122
- 18 M. D. Thomson, M. Kress, T. Loffler *et al.*. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications [J]. *Laser & Photonics Reviews*, 2007, 1(4): 349~368
- 19 J. Kasparian, J.-P. Wolf. Physics and applications of atmospheric nonlinear optics and filamentation [J]. Opt. Express, 2008, 16(1): 466~493
- 20 A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media [J]. *Physics Reports-Review Section of Physics Letters*, 2007, **441**(2~4): 47~189
- 21 S. L. Chin, S. A. Hosseini, W. Liu *et al.*. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges [J]. *Canadian J. Physics*, 2005, **83**(9): 863~905
- 22 P. Bejot, Y. Petit, L. Bonacina et al.. Ultrafast gaseous "halfwave plate" [J]. Opt. Express, 2008, 16(10): 7564~7570